No converstion required
Step 1: Convert each binary digit to its decimal equivalent.
Step 2: Sum these values, using their positional value (2^position).
Example: 1101 (Binary) = 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0 = 8 + 4 + 0 + 1 = 13 (Decimal)
Step 1: Group binary digits into sets of three, starting from the right.
Step 2: Convert each group to its octal equivalent.
Example: 1101 (Binary) -> 001 101 = 1 5 (Octal) = 15 (Octal)
Step 1: Group binary digits into sets of four, starting from the right.
Step 2: Convert each group to its hexadecimal equivalent.
Example: 1101 (Binary) -> 0001 1011 = 1 B (Hexadecimal) = 1B (Hexadecimal)
Step 1: Convert binary to decimal.
Step 2: Convert decimal to ASCII character.
Example: 1101 (Binary) = 13 (Decimal) -> ASCII character of decimal 13
No converstion required
Step 1: Divide the decimal number by 2.
Step 2: Write down the remainder (0 or 1).
Step 3: Repeat the process with the quotient until the quotient is 0.
Step 4: The binary number is the remainders read in reverse order.
Example: 13 (Decimal) -> 13/2 = 6 R1, 6/2 = 3 R0, 3/2 = 1 R1, 1/2 = 0 R1 -> 1101 (Binary)
Step 1: Divide the decimal number by 8.
Step 2: Write down the remainder.
Step 3: Repeat the process with the quotient until the quotient is 0.
Step 4: The octal number is the remainders read in reverse order.
Example: 13 (Decimal) -> 13/8 = 1 R5, 1/8 = 0 R1 -> 15 (Octal)
Step 1: Divide the decimal number by 16.
Step 2: Write down the remainder.
Step 3: Repeat the process with the quotient until the quotient is 0.
Step 4: The hexadecimal number is the remainders read in reverse order.
Example: 13 (Decimal) -> 13/16 = 0 R13 -> D (Hexadecimal)
Step 1: Find the ASCII character corresponding to the decimal value.
Example: 65 (Decimal) -> A (ASCII)
No converstion required
Step 1: Convert each octal digit to its binary equivalent.
Example: 7 (Octal) -> 111 (Binary)
Step 1: Convert each octal digit to its decimal equivalent.
Step 2: Sum these values, using their positional value (8^position).
Example: 15 (Octal) = 1*8^1 + 5*8^0 = 8 + 5 = 13 (Decimal)
Step 1: Convert octal to decimal.
Step 2: Convert decimal to hexadecimal.
Example: 15 (Octal) -> 13 (Decimal) -> D (Hexadecimal)
Step 1: Convert octal to decimal.
Step 2: Convert decimal to ASCII character.
Example: 101 (Octal) -> 65 (Decimal) -> A (ASCII)
No converstion required
Step 1: Convert each hexadecimal digit to its binary equivalent.
Example: F (Hexadecimal) -> 1111 (Binary)
Step 1: Convert each hexadecimal digit to its decimal equivalent.
Step 2: Sum these values, using their positional value (16^position).
Example: 1D (Hexadecimal) = 1*16^1 + 13*16^0 = 16 + 13 = 29 (Decimal)
Step 1: Convert hexadecimal to decimal.
Step 2: Convert decimal to octal.
Example: 1D (Hexadecimal) -> 29 (Decimal) -> 35 (Octal)
Step 1: Convert hexadecimal to decimal.
Step 2: Convert decimal to ASCII character.
Example: 41 (Hexadecimal) -> 65 (Decimal) -> A (ASCII)
No converstion required
Step 1: Convert each character to its ASCII decimal value.
Step 2: Convert each decimal value to its binary equivalent.
Example: A (Text) -> 65 (Decimal) -> 1000001 (Binary)
Step 1: Convert each character to its ASCII decimal value.
Example: A (Text) -> 65 (Decimal)
Step 1: Convert each character to its ASCII decimal value.
Step 2: Convert each decimal value to its octal equivalent.
Example: A (Text) -> 65 (Decimal) -> 101 (Octal)
Step 1: Convert each character to its ASCII decimal value.
Step 2: Convert each decimal value to its hexadecimal equivalent.
Example: A (Text) -> 65 (Decimal) -> 41 (Hexadecimal)